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We state the modern definition of circle, which we will use.

Definition.
A circle is the set of points in a plane which are equidistant to a given point. The given point is called the
center, and the common distance from a point on the circle to the center is called the radius.

A chord of a circle is a line segment whose endpoints are on the circle.
The diameter of a circle is the length of a chord which passes through the center. This is clearly twice

the radius.
A line or circle is tangent to a circle if they intersect in one point.
We sometimes call a line segment from the center to the circle a radius, and we sometimes call a chord

passing through the center a diameter of the circle.

From the definition, it is apparent that a circle is completely determined by its center and radius; to
circles are equal if and only if they have the same center and radius.

Euclid says that equal circles are those which have equal diameters; in modern language, we would say
that two circles are congruent if they have the same diameter. Euclid says that if a line or a circle and a
circle intersect in one point, they touch.

We rephrase Proposition III.1, to state what the proof shows.

Proposition 3. Center of a Circle
Given a circle and a chord in it, the center of the circle is the midpoint of the chord which is the perpendicular
bisector of the given chord.

Corollary.
The center of a a circle lies on the perpendicular bisector of any chord. Thus, the center is the intersection
of any two perpendicular bisectors.

Proposition 3. Chord Bisected by Diameter
Given a circle, a diameter, and a chord, the chord is perpendicular to the diameter if and only if they intersect
in the midpoint of the chord.

We state Proposition III.4 as its contrapositive, which is equivalent and clearer.

Proposition 4. Chords Bisecting Each Other
Given a circle and two chords, if the chords bisect each other, they intersect at the center.

Propositions III.5, III.6, and III.10 are subsumed by the following clearer statement.

Propositions 5, 6, 10. Intersecting Circles
Distinct circles intersect in at most two points.

Proof. Let A, B, and C be points on a circle. The perpendicular bisectors of AB and BC intersect in a
point E. This point is the center of the circle. The radius of the circle is EA. Any other circle containing
points A, B, and C would have the same center and radius; thus, it would be the same circle. Therefore,
distinct circles cannot have three points in common.

Corollary.
Three noncollinear points determine a unique circle.

Proposition 9. Three Radii
Given a circle, a point inside, and three segments from the point to the circle, if the three segments are
congruent, the point is the center.

Propositions 11, 12. Touching Circles
If two circles intersect in exactly one point, the line through the centers contains the point of intersection.



Proposition 14. Equal Bisectors
Given a circle, congruent chords are equally distant from the center, and chords equally distant from the
center are congruent.

The following is, in Euclid, a “porism” of his Proposition 16. We only need the following statement.

Proposition 16. Perpendicular Lines are Tangent
If a line intersects a circle at right angles to a point intersection, they touch.

Construction 17. Tangent Construction
Given a circle and a point outside of it, it is possible to construct a line through the point which is tangent
to the circle.

Proposition 18. Tangents are Perpendicular
Given a circle and a tangent line, the line is perpendicular to the radius from the center to the point of
intersection.

Proposition 19. Center on Tangent’s Perpendicular
Given a circle and a tangent line, the center of the circle lies on the line through the point of intersection
and perpendicular to to given line.

What we call Thales’ Theorem is actually a portion of Proposition 31 in Euclid, although it does not
require any of Propositions 20 through 30 to prove. Indeed, all it requires is Book I, Proposition 5, the Base
Angle Theorem. We place a modern proof here. Keep in mind that Euclid had no Algebra; it did not exist
at the time.

Proposition 31. Thales’ Theorem, circa 600 B.C. An angle inscribed in a semicircle is a right angle.

Proof. Consider triangle 4ABC, where m∠ABC = 90◦. Let α = m∠AOB and β = m∠OCB. We know
that OA = OB = OC, since they are radii of �O. Thus, 4AOB and 4BOC are isosceles. By the Base
Angle Theorem, we see that m∠ABO = α and m∠BOC = β.

Since the sum of the measures of the angles in a triangle is 180◦, we compute that m∠AOB = 180 − 2α,
and m∠BOC = 180− 2β. Since ∠AOB and ∠BOC is a linear pair, there measure sum to 180◦; thus

180◦ = m∠AOB +m∠BOC = (180− 2α) + (180− 2β), so 2α+ 2β = 180◦, so α+ β = 180◦.

It is now clear that
m∠ABC = m∠ABO +m∠BOC = α+ β = 90◦.


